Agenda

- Mr. Michael Disabato, Senior Analyst, Burton Group – “Wi-Fi Protected Access: Locking Down the Link”
- Send your questions via “Chat”
- Followed by a panel with
 - Michael Disabato, Panel Moderator
 - David Cohen – Chairman, Wi-Fi Alliance Marketing Security Task Group
 - Jesse Walker – Network Security Architect, Intel
 - Dorothy Stanley - System Architect, Agere Systems
 - Gene Chang – Vice President, Strategic Business Development, Funk Software
Wi-Fi Protected Access™: Locking Down the Link

Michael Disabato
Senior Analyst
Burton Group
mdisabato@burtongroup.com
www.burtongroup.com
June 11, 2003

Agenda

Wired Equivalent Privacy (WEP)
The Promise of Wi-Fi Protected Access™ (WPA)
Implementation Issues
Wi-Fi Protected Access 2 (WPA2)
Recommendations & Conclusions
Q & A
Wired Equivalent Privacy (WEP)

What is WEP?
- WEP was designed to secure the radio link
- Wired Equivalent Privacy (WEP) uses the RC4 encryption algorithm devised by Ron Rivest (the “R” in RSA) of RSA Security, Inc.
 - Symmetric-key stream cipher
 - Variable length key
- WEP uses 64-bit shared keys
- Initialization Vector (IV) is 24 bits of the key and sent as plain text

Wired Equivalent Privacy (WEP)

WEP has been shown to have some serious weaknesses
- A single key is used for all access points and client radios
- Keys can be recovered with easily available utilities
- Recovered keys expose the network to attacks or passive monitoring
- Lack of automated key management contributes to infinite static key lifespan in large networks
- When WEP was available it was not always turned on
Wired Equivalent Privacy (WEP)

And if that wasn’t enough...
- WEP provides no forgery protection
- WEP provides no replay protection
- WEP misuses the RC4 encryption algorithm and allows weak key attacks
- WEP uses the Initialization Vector as part of the key, and when the IV wraps around, data can be easily recovered

Key Recovery Attacks
- Based on weaknesses in the key scheduling algorithm, utilities (AirSnort, WEPCrack) have been developed that are able to recover static WEP keys
- Common features of these utilities:
 - Collection of data for attack can be done passively
 - Once the secret key is recovered all traffic can be read until the key is changed
 - Less than 20,000 packets encrypted with the same key are required for this to work
 - Send and receive traffic is used in the attack
 - TCP ACK packets add to the traffic count and allow a known plain text attack
Wired Equivalent Privacy (WEP)

Dynamic Key Change – A Quick Fix

- WLAN vendors implemented a key management fix to make up for WEP’s weaknesses
- A unified WEP fix was needed that was vendor neutral and Wi-Fi interoperable
- All the implementations required an authentication server (RADIUS or AAA)
- No WEP enhanced authentication method was available for small sites and home networks

WEP Secured WLAN

- Resource Layer: Database Server, Server
- Distributed Perimeter Layer: Firewall, VPN Terminator
- Access Layer: Authentication/ Key Generation
- VLAN
- 802.11a/b Air Interface
- 802.1x Authentication
- WEP Encryption
- Encrypted VPN

* = Optional
Agenda

Wired Equivalent Privacy (WEP)
The Promise of Wi-Fi Protected Access™ (WPA)
Implementation Issues
Wi-Fi Protected Access 2 (WPA2)
Recommendations & Conclusions
Q & A

The Promise of WPA

What is WPA?

- Wi-Fi Protected Access (WPA) is a response by the WLAN industry to offer an immediate, strong security solution
- WPA is intended to be:
 - A software/firmware upgrade to existing access points and NICs
 - Inexpensive in terms of time and cost to implement
 - Cross-vendor compatible
 - Suitable for enterprise, small sites, home networks
 - Runs in enterprise mode or pre-shared key (PSK) mode
- WPA is a subset of the 802.11i draft standard and is expected to maintain forward compatibility with the standard
The Promise of WPA

Enterprise Mode
- Requires an authentication server
- Uses RADIUS protocols for authentication and key distribution
- Centralizes management of user credentials

Pre-Shared Key Mode
- Does not require authentication server
- “Shared Secret” is used for authentication to access point

Comparing WPA and 802.11i

<table>
<thead>
<tr>
<th>Feature</th>
<th>WPA</th>
<th>802.11i</th>
</tr>
</thead>
<tbody>
<tr>
<td>802.1X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Other Features</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Basic Service Set</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Independent Basic Service Set</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pre-authentication</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Key hierarchy</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Key management</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cipher & Authentication Negotiation</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Data Privacy Protocols</td>
<td>TKIP</td>
<td>CCMP (AES)</td>
</tr>
</tbody>
</table>

Source: Wi-Fi Alliance

*Implement what is stable and bring it to market
Continue work on 802.11i*
The Promise of WPA

Wi-Fi Alliance Security Roadmap

WPA Certification
Optional

WPA v2 Certification
Optional
Mandatory

2002

November
WPA Interop Test Development Starts

2003

WPA Certification Begins
April 29

2004

Expected 802.11i Ratification
Q1

WPA v2 includes full 802.11i support including CCMP encryption

Possible to Start 802.11i Interoperability Testing
Q3

How WPA Addresses the WEP Vulnerabilities

- WPA wraps RC4 cipher engine in four new algorithms
 1. Extended 48-bit IV and IV Sequencing Rules
 - \(2^{48}\) is a large number! More than 500 trillion
 - Sequencing rules specify how IVs are selected and verified
 2. A Message Integrity Code (MIC) called Michael
 - Designed for deployed hardware
 - Requires use of active countermeasures
 3. Key Derivation and Distribution
 - Initial random number exchanges defeat man-in-the-middle attacks
 4. Temporal Key Integrity Protocol generates per-packet keys
The Promise of WPA

WPA Summary
- Fixes all *known* WEP privacy vulnerabilities
- Designed and scrutinized by well-known cryptographers
- Pragmatic sacrifice of best possible security to minimize performance degradation on existing hardware
- Will work in home, small business, and enterprise environments

Agenda

Wired Equivalent Privacy (WEP)
The Promise of Wi-Fi Protected Access™ (WPA)

Implementation Issues
Wi-Fi Protected Access 2 (WPA2)
Recommendations & Conclusions
Q & A
Implementation Issues

Pre-Shared Key Mode Issues

- Needed if there is no authentication server in use
- If shared secret becomes known, network security may be compromised
- No standardized way of changing shared secret
- Significantly increases the effort required to allow passive monitoring and decrypting of traffic
- The more complex the shared secret, the less likely it will fall to dictionary attacks

Implementation Issues

Migration from WEP to WPA

- Enterprise:
 - Select EAP types and 802.1X supplicants to be supported on stations, APs, and authentication servers
 - Select and deploy RADIUS-based authentication servers
 - Upgrade APs with WPA software and firmware
 - Upgrade client stations with WPA software and firmware
- Small Office/Home Office:
 - Upgrade the APs with WPA software and firmware
 - Upgrade client stations with WPA software and firmware
 - Configure pre-shared key (PSK) or master password on the AP
 - Configure the PSK on client stations
Implementation Issues

Migration from WEP to WPA

- Existing authentication systems can still be used.
- Moving to WPA is “all or nothing”.
- WPA replaces WEP.
- WPA 2 replaces RC4 with AES.
- All access points and client radios will need new firmware and drivers.
- Some older NICs and access points may not be upgradeable.
- Once enterprise access points are upgraded, home units will need to be, if they were using WEP.

Agenda

- Wired Equivalent Privacy (WEP)
- The Promise of Wi-Fi Protected Access™ (WPA)
- Implementation Issues
- **Wi-Fi Protected Access 2 (WPA2)**
- Recommendations & Conclusions
- Q & A
Wi-Fi Protected Access 2

- Uses the Advanced Encryption Standard (AES)
 - AES selected by National Institute of Standards and Technology (NIST) as replacement for DES
 - Symmetric-key block cipher using 128-bit keys
 - Generates CCM Protocol (CCMP)
 - CCMP = CTR + CBC + MAC
 - CTR = Counter Mode Encryption
 - CBC/MAC = Cipher Block Chaining/Message Authentication Code
- Hardware accelerated and will require replacement of most access points and some NICs
- Certified equipment due in late 2004

Wi-Fi Protected Access 2 (WPA2)

<table>
<thead>
<tr>
<th></th>
<th>WEP</th>
<th>WPA</th>
<th>WPA 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cipher</td>
<td>RC4</td>
<td>RC4</td>
<td>AES</td>
</tr>
<tr>
<td>Key Size</td>
<td>40 bits</td>
<td>128 bits encryption 64 bits authentication</td>
<td>128 bits</td>
</tr>
<tr>
<td>Key Life</td>
<td>24-bit IV</td>
<td>48-bit IV</td>
<td>48-bit IV</td>
</tr>
<tr>
<td>Packet Key</td>
<td>Concatenated</td>
<td>Mixing Function</td>
<td>Not Needed</td>
</tr>
<tr>
<td>Data Integrity</td>
<td>CRC-32</td>
<td>Michael</td>
<td>CCM</td>
</tr>
<tr>
<td>Header Integrity</td>
<td>None</td>
<td>Michael</td>
<td>CCM</td>
</tr>
<tr>
<td>Replay Attack</td>
<td>None</td>
<td>IV Sequence</td>
<td>IV Sequence</td>
</tr>
<tr>
<td>Key Management</td>
<td>None</td>
<td>EAP-based</td>
<td>EAP-based</td>
</tr>
</tbody>
</table>
Agenda

Wired Equivalent Privacy (WEP)
The Promise of Wi-Fi Protected Access (WPA)
Implementation Issues
Wi-Fi Protected Access 2 (WPA2)
Recommendations & Conclusions
Q & A

Recommendations

General

- Conduct a risk assessment for all information that will travel over the WLAN and restrict sensitive information
- Policies and infrastructure for authenticating remote access users can be applied to WLAN users
- Perform regular audits of the WLAN using network management and RF detection tools
- Minimize signal leakage through directional antennas and placement of access points
- Make sure all equipment being purchased can be upgraded to support WPA and WPA 2/AES
- If using Pre-Shared Key Mode consider that the shared secret may become compromised
Recommendations

Should you upgrade to WPA2 with AES after WPA?

- An investment in new hardware (access points, NICs) may be needed
- Does your risk analysis indicate the extra protection is warranted
- WPA has not been broken (yet)
- Is there a compelling business reason to do so

However...

- WPA has not met the challenge of live traffic
- Network equipment will change over the next few years
- Eventually, RC4 will succumb to Moore’s Law

Conclusions

WPA/ WPA 2 Secured WLAN
Conclusions

- WEP is insufficient to protect WLANs today from determined attackers
- WPA resolves all of WEP’s known weaknesses
- WPA is a dramatic improvement in Wi-Fi security
- WPA provides an enterprise-class security solution for user authentication and encryption
- WPA is a subset of the 802.11i draft standard and is expected to maintain forward compatibility with the standard
- WPA 2 will provide an even stronger cryptographic cipher than WPA
- Unless there is a significant flaw found in WPA or RC4 is broken, there may be no reason to move to WPA 2/AES in the near future
- Numerous White Papers and additional information is available about WPA on the Wi-Fi WPA website

Wi-Fi Alliance

Wi-Fi is everywhere!

Q&A

June 11th 2003
Q&A

- Michael Disabato, Panel Moderator
- David Cohen – Chairman, Wi-Fi Alliance Marketing Security Task Group
- Jesse Walker – Network Security Architect, Intel
- Dorothy Stanley - System Architect, Agere Systems
- Gene Chang – Vice President, Strategic Business Development, Funk Software